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PROJECT SUMMARY 
Vaccine efficacy for seasonal influenza is typically low, especially when strains used in vaccine formulation are 
mismatched to circulating strains. Such vaccines often offer even less protection from novel strains – the 2008 
seasonal influenza vaccine may have even worsened immune responses to the novel 2009 pandemic strain. 
The development of a universal influenza vaccine is hindered by a lack of understanding of factors driving 
variation in the immune response to influenza. We will use longitudinal cohort data from multiple sources to 
explore how characteristics of vaccines interact with characteristics of the vaccine recipient to clarify potential 
drivers and mechanisms of the immune response to vaccination. We aim to explore how antigenic differences 
between the vaccine strain and historical strains (a surrogate for potential future strains) interact with the 
preexisting immune repertoire of the recipient, and how vaccine dose and prior vaccination history can 
modulate this relationship. In addition, we will propose metrics for the fair evaluation of vaccine candidates to 
multiple historical strains, which can allow the selection of an optimal broadly reactive vaccine. Our analysis 
will allow for improved development and evaluation of universal vaccine candidates. 

PROJECT NARRATIVE 
Influenza is a respiratory disease that occurs in seasonal epidemics worldwide. The Centers for Disease Control 
and Prevention recommend annual vaccination against seasonal influenza with a modified vaccine for adults in 
the United States, but the effectiveness of these vaccines varies greatly across seasons and individuals. 
Improved understanding of the drivers of the immune response following vaccination is crucial for improving 
influenza vaccines. 
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1. SPECIFIC AIMS 
Recent concerns about H5N1 influenza spillover events highlight the need for a universal influenza vaccine 
with the ability to mitigate future pandemic events. Outside of pandemic concerns, seasonal epidemic 
influenza has a consistently high burden, with vaccine effectiveness typically 50% or less. A combination of 
rapid antigenic evolution and heterogeneity in individual host response makes developing a durable universal 
vaccine difficult. The goal of my proposal is to understand how pre-existing immunity affects individual 
response to the seasonal influenza vaccine, and how this effect is modified by prior immunity, vaccination 
history, vaccine dose, and recipient demographics. A better understanding of the host immune response will 
inform the design and evaluation of vaccines which induce a broader, more robust response. 

We will use Bayesian hierarchical models, causal inference, and machine learning methods to quantify these 
effects. Our models will account for interactions between predictors, nonlinear effects, and clustered 
measurements. We will analyze longitudinal influenza vaccination data from the UGAFluVac cohort study (PI: 
Ross), wherein individuals provided serum samples, potentially for multiple years, and these samples were 
tested against a panel of historical viruses. We will also combine the UGAFluVac data with other data sources 
provided by Ben Cowling, Andrea Sant, and potentially other investigators involved with the DIVERsity study 
(NIH project number 1R01AI170116-01) or the CIVR-HRP NIH CIVICs site (NIH project number 
75N93019C00052). 

Aim 1. Develop metrics for the quantification of the total immune response to an influenza vaccine, 
incorporating both strength and breadth. Using the UGAFluVac data, we will analyze the relationship 
between immune response and antigenic distance, a measurement of how different the assay strain and the 
vaccine strain are. We will develop metrics for quantifying the overall strength of the immune response to a 
panel of heterologous strains, and the breadth of the response – intuitively, how the immune response 
diminishes as antigenic distance increases. We will also use subsamples of the UGAFluVac data to analyze the 
robustness of these metrics across differing panels of historical viruses. 

Aim 2. Quantify the role of pre-vaccination titer, prior vaccinations, vaccine dose, and antigenic distance on 
individual vaccine response. Influenza vaccinations provide diminishing boosts for recipients with high 
antibody titers, called the antibody ceiling effect. However, the threshold and rate of diminishing boosts 
depend on several other host and vaccine factors, including prior vaccination history, vaccine dose, and 
antigenic distance. We will use hierarchical statistical models and mechanistic models to disentangle the 
individual effects and interactions. 

Aim 3. Explore how age and vaccine dose interact to affect the antibody response. The UGAFluVac cohort 
allows participants over the age of 65 to choose whether they receive FluZone standard dose or FluZone high 
dose, and Andrea Sant’s cohort study administered FluZone HD to individuals aged 18 – 49. By combining the 
two datasets, we can use causal inference and hierarchical modeling techniques to understand the effect of 
dose, and how this relates to previous mechanistic modeling predictions. 

2. SIGNIFICANCE 
Influenza rapidly evolves to escape current vaccines through two major mechanisms: antigenic drift and shift 
(1,2). Antigenic drift is the gradual process of mutation, driven by selective pressure. Antigenic shifts are 
sudden and abrupt changes in influenza antigens, which occur by recombination with other strains. See 
Figure 2.1. 
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Figure 2.1: Antigenic drift and shift both lead to the emergence of influenza strains with novel antigens that 
can escape prior immunity. While vaccine escape due to drift is a gradual process that can be palliated by 
annual reformulation of vaccines, escape due to shift is a relatively quick process that can lead to epidemic or 
even pandemic spread of influenza before there is time to develop and administer a new vaccine. 

Seasonal epidemic influenza has a substantive burden (3–5), especially in children and older adults (6,7). 
Vaccine effectiveness (VE; a measurement of how protective the vaccine is) varies widely, and is typically 
lower when strains used in the seasonal vaccine do not match circulating strains (8–10). Even when strains are 
correctly matched, VE rarely exceeds 50%. The current strategy of predicting circulating strains to determine 
the formulation of the influenza vaccine also leads to low pandemic preparedness. The spontaneous 
emergence of new influenza strains, as with the 2009 H1N1 pandemic (11) or the highly pathogenic H5N1 
spillover cases in early 2023 (12) also demonstrate the need for a broadly protective influenza vaccine. A 
universal vaccine, which protects against current and future influenza variants has the potential to reduce the 
burden of seasonal influenza and mitigate future pandemics. 

Unfortunately, designing a universal influenza vaccine is challenging (13–15). Understanding the immune 
response to influenza, in the context of rapid evolution of new variants, is a major landmark for improving 
vaccine design. Since the immune response to a vaccine depends on an individual’s history of infection and 
vaccination events (Figure 2.2), the susceptible population contains incredibly diverse immune repertoires. 
Decomposing the immune response to novel influenza strains into understandable effects is an open problem. 
Dissecting the components of the response would yield key insights into the design of vaccines which are 
reliably broadly protective for individuals regardless of their immune state at time of vaccination (8). 
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Figure 2.2: While there are some similarities among individuals in influenza exposure, every member of the 
susceptible population likely has a different pattern of exposure to influenza. Exposure patterns include not 
only the set and order of influenza strains which an individual has encountered, but also whether a particular 
exposure was due to infection or vaccination. Each individual also expresses variability in their immune state at 
the time of exposure, leading to different responses, and thus different immune repertoires, even if the path of 
exposure is identical. 

2.1 Aim 1 
There is no universally accepted method for quantifying the overall strength of the immune response induced 
by a vaccine candidate. Since direct trials of efficacy are expensive, correlates of protection (CoP) are 
measured instead. Several CoPs are currently used to test the efficacy of influenza vaccine candidates, but 
there is no consensus on which, if any, are best (16). The most common CoP used in practice is the 
hemagglutination inhibition (HAI) titer. We will focus on HAI titer, but the methods we propose could be 
applied to any quantitative CoP. 

HAI is correlated with protection from influenza, with an individual titer of 1:40 corresponding to 
approximately 50% protection (17,18). If an individual’s reciprocal titer is 40 or greater for a particular strain of 
influenza, the individual is said to be seroprotected against that strain. If a vaccine induces a 4-fold or greater 
increase in HAI titer, with the final post-vaccination measurement above 40, the individual is said to have 
seroconverted against that strain. Seroconversion and seroprotection are commonly used clinical endpoints 
for assessing the immunogenicity of an influenza vaccine candidate. An assay using the vaccine strain is said to 
be homologous, while an assay using any other strain is said to be heterologous. 

Many vaccine studies only measure the immune response to homologous strains, which we will call the 
magnitude of the response. However, to evaluate a broadly reactive universal vaccine candidate, we also need 
to measure the induced immune response to heterologous strains, which we call the breadth of the response. 
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We can compare universal vaccine candidates using some weighted combination of magnitude and breadth, 
which we call the overall strength of the response. 

Previous studies have evaluated the overall strength of individual immune responses after vaccination by 
running panel of assays using multiple heterologous strains (Figure 2.3). The breadth of the response is then 
taken as either the count or proportion of strains to which the individual seroconverted (19,20). While this 
method is easy to quantify in a laboratory setting, the estimates of breadth are biased by the selection of the 
panel of heterologous strains and do not take antigenic distance into account. Antigenic distance is a metric 
for describing how similar two strains of influenza should appear to the immune system. Using the proportion 
of seroconverted strains metric, one vaccine candidate could appear to be more broadly protective than 
another simply because one lab chose a panel of strains which were less antigenically distant on average. Such 
variation in panels between research groups makes comparing these breadth estimates across studies difficult 
(21). 

 

Figure 2.3: A typical experimental setup involves taking serum samples from an individual both before and 
some time after vaccination. We can then conduct HAI assays using the serum samples against a variety of 
influenza strains. Changes in the response to this panel of strains after vaccination indicates the degree to 
which vaccination elicited immune responses to particular strains. 

Modern methods for measuring the antigenic distance between strains of influenza will allow us to develop a 
consistent framework for assessing the breadth of a vaccine candidate. The simplest method for computing 
antigenic distance is the time-based method, where the antigenic distance is taken as the difference in 
isolation year between strains (22,23). Other methods include sequence-based methods, which assess the 
similarity of the genetic or protein sequence of the two strains (24–28); and antigen-based methods, which 
use immunogenicity data to inform distance between strains (29–33). There is no clear consensus on which 
measures of distance are most useful for informing vaccine evaluation. An individual’s responses to a panel of 
virus strains can be plotted against antigenic distance, forming an antibody landscape (Figure 2.4). While 
previous work has explored the quantitative comparison of antibody landscapes (22), such approaches have 
not been widely utilized. 
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Figure 2.4: We can model an individual’s immune response to viral strains as a function of antigenic distance, 
creating an antibody landscape. A broadly reactive vaccine will have a post-vaccination (for example, day 28) 
antibody landscape which is higher than the pre-vaccination (day 0) landscape, even for distant strains. A 
hypothetical universal influenza vaccine would have a post-vaccination landscape that is uniformly higher than 
the pre-vaccination landscape, as shown here, eliciting a response to all comparable influenza strains. 

We will develop methods for quantifying the magnitude, strength, and overall breadth of a vaccine response 
from individual antibody landscapes. Using our framework for vaccine evaluation, we will compare measures 
of antigenic distance. We also plan to test the robustness of our metric to the selection of the virus panel in 
order to compare our framework to the traditional method. We will explore simple regression models, flexible 
spline models, and functional data analytic techniques for their potential to characterize the magnitude and 
breadth of the immune response (Figure 2.5). For this aim, we will use longitudinal cohort data with a wide 
panel of heterologous responses for each individual collected by Ted Ross (34–36). 
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Figure 2.5: In a vaccine cohort study, we can take immune measurements for a panel of heterologous viruses 
from many individuals. Each of these individuals then has their own antibody landscape, shown here as 
different colored points for each individual. From these individual landscapes, we can use statistical modeling 
techniques to infer a typical landscape that might be representative of the response we expect to see from this 
vaccine candidate. The black line here is a linear statistical model, while the dashed red line is a potential 
nonlinear statistical model. We then hope to summarize these typical landscapes to obtain metrics for vaccine 
candidate comparison that balance the magnitude of the response with the breadth of the response. (This 
figure is conceptual and no real data or fits are shown.) 

2.2 Aim 2 
Several characteristics of the vaccine and the recipient are associated with the immune response to the 
vaccine (Figure 2.6). In addition to antigenic distance between the vaccine strain and the strain of interest, 
vaccine dose (37–39), route of administration (40–42), and type (43–45) are associated with the overall 
strength of the immune response. Promising vaccine candidates have been developed using intranasal, 
intramuscular, and subdermal routes of administration. Recombinant protein or mRNA vaccines may prove to 
be superior to the traditional split-inactivated or live attenuated vaccine types. 

In addition to vaccine design choices, baseline characteristics of the vaccine recipient (the host) can alter the 
vaccine response. These characteristics can vary between every member of the susceptible population, or be 
aggregable at the population level. Genetic differences (46–48), epigenetic modifications, and differential 
gene expression (35,49–53), all fall into the former category. Aggregable characteristics include sex, obesity, 
and age. 
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Figure 2.6: Schematic showing the overall drivers to the vaccine response. 

Birth sex-associated genetic differences and sex hormone levels may influence the immune response to 
influenza, although results are ambiguous with no mechanism yet discovered (54–58). Obesity, typically 
measured through BMI, is associated with a decreased response or with more rapid waning of antibodies (59). 
As individuals age, they undergo immunosenescence, a gradual decline in immune function and protection 
(20,60). 

In addition to the immunosenescence effect of age, an individual’s birth year is predictive of the immune 
response to specific strains of influenza, because birth year is strongly associated with the first strain of 
influenza to which an individual is exposed (61–63). The theory of imprinting (also called original antigenic sin) 
predicts that an individual’s first influenza exposure leads to the development of a memory response to that 
strain. Future exposures then activate the memory response to the original strain (assuming the strains are 
somewhat similar), which dominates the novel immune response to the new strain. Eventually, influenza 
antibodies reach a saturation level called the “antibody ceiling”, which can vary between individuals (64–66). 

One consequence of imprinting and the antibody ceiling is a strong negative relationship between pre-
vaccination immunity and the response to a vaccine (44,67). Prior and repeat vaccination also has a strong 
effect on vaccine response (20,68), potentially independent of the antibody ceiling effect. In fact, the 
reactivation of the memory response at every exposure to a somewhat similar strain makes the response to 
vaccination dependent on an individual’s entire history of influenza infection and vaccination (23,31,64,69). In 
addition, the immune response to influenza may be affected by prior exposure to other pathogens, including 
herpesviruses such as Epstein-Barr virus (70) or cytomegalovirus (71), or through antigen-independent effects 
which modify the baseline immune state and induce a differential response (72). 

While measuring all of these effects simultaneously is impossible, we intend to model the effects of vaccine 
dose, pre-vaccination titer, prior vaccination, and antigenic distance using data from the cohort studies 
conducted by Ted Ross. While our analysis will be limited to a single vaccine (Sanofi Pasteur’s FluZone, with 
standard and high dose formulations), we have data on an extensive panel of historical viruses along with 
reported vaccination history for each patient. We will incorporate predictive machine learning approaches and 
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hierarchical bayesian modeling to understand the individual contributions of these factors to the overall 
immune response. We also plan to modify previously-developed mechanistic models for multiple influenza 
epitope responses (73–75) to include a degree of similarity between epitopes (conceptually representing 
antigenic distance), and compare the results from the updated model to our data. 

2.3 Aim 3 
The role of vaccine dose is so important in vaccine response that determining a dose that balances efficacy 
and side effects is a crucial part of drug approval in the United States (8,13,76). High-dose influenza vaccines 
are approved for use in older adults and can substantially improve the immune response for older and 
otherwise immunocompromised individuals (39,77,78). While otherwise healthy recipients generate immune 
responses to fractional doses of influenza vaccine (79,80), mechanistic models predict that increased dose 
may be useful in overcoming the negative effects of prior immunity and original antigenic sin (73,74). 

These mechanistic models allow for simulation of the immune response to a variety of vaccine doses, and 
predict that as the dose is increased, the effect of prevaccination titer is suppressed. That is, an individual with 
a higher prevaccination titer could potentially receive a higher dose than an individual with a low 
prevaccination titer, and observe the same fold-change in titer as a result of vaccination. To date, a 
randomized clinical trial comparing standard and high dose formulations of available vaccines has not been 
conducted in otherwise healthy adults 18 - 49, so these claims have not yet been evaluated in groups that are 
not elderly or immunocompromised. 

We will combine observational data from multiple sources to estimate the effect of dose on influenza vaccine 
response while controlling for the effects of prevaccination titer, age, and other relevant effects as 
enumerated previously (Figure 2.7). In this analysis, we specifically plan to focus on the effect of dose on 
homologous vaccine response by combining the UGAFluVac data, where high dose vaccines were only 
administered to individuals aged 65 or older, with data collected by Angela Branche and Andrea Sant (44,81). 
We will obtain the average causal effect of dose, after controlling for age and other confounders, and compare 
the predictions to those of the mechanistic model, which does not currently account for age. Together, these 
analyses will provide a better substantive understanding of the effect of dose on the immunogenicity of a 
standard influenza vaccine. 

 

Figure 2.7: High dose (HD) vaccines can induce a stronger immune response in elderly participants than 
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standard dose (SD). While SD vaccines can elicit a satisfactory immune response in younger participants, an HD 
vaccine still induces a larger antibody response. However, the exact dose response relationship for 
intermediate doses (top right graph, showing three potential dose-response relationships) and the relationship 
between dose and age (bottom right graph, showing one potential dose-age relatiopnship) remain unclear. 
While we would ideally like to understand the dose-response relationship, we only have data on standard and 
high dose vaccines. Mechanistic modeling will allow us to predict potential response patterns. We also expect 
the effect of dose to differ across vaccine formulations. 
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3. APPROACH 

3.1 Data description 
We will combine data from multiple influenza vaccination cohort studies for our analyses. At the time of 
writing, we have data from two cohort studies conducted by Ted Ross, one study conducted by Andrea Sant 
and Angela Branche (see (44)), and a collaboration with Ben Cowling. Ben is the PI of several similar studies 
and has offered to share data with us. The two studies conducted by Ted Ross provide a unique opportunity to 
study heterologous antibody responses to influenza vaccination, as a wide historical panel of assays was 
conducted for each individual. Combining Ross’ data with data from Sant and Cowling will allow for us to 
compare the immunogenicity of multiple vaccines, and increase the power of our analyses of host factors. 

We will refer to both of Ross’ cohort studies conjointly as the UGAFluVac study. This data set consists of 
longitudinal HAI measurements taken at three different study sites. From fall 2013 to spring 2016, participants 
were recruited at the study site in either Pittsburgh, PA or Stuart, FL. Sample collection is detailed in (34). 
Briefly, the study is a prospective open cohort design. Participants were adults aged 18 and up who were 
allowed to repeat each year, and the data includes a unique ID per participant that allows for the identification 
of longitudinal measurements. Each participant received a pre-vaccination blood draw, and was then 
administered a split-inactivated standard dose (SD) Fluzone seasonal influenza vaccine (Sanofi Pasteur). 
Patients aged 65 or older could opt to receive Fluzone High Dose (HD) instead. At the PA study site in 2013, 
some patients were administered Fluzone intradermal rather than the standard intramuscular Fluzone 
formulation. Followup whole blood draws were targeted for 21 days post-vaccination. 

Processed sera were used for HAI assays following standard protocols. HAI assays were conducted using the 
homologous strain and a panel of heterologous strains. The starting dilution was 1:10 and assays which did not 
agglutinate at the starting dilution were coded as 1:5. For all further analyses, we will use the reciprocal titer 
transformed as analysis titer = log2(raw reciprocal titer/5). This transformation serves to set 0 as the limit of 
detection on the log scale. Additionally, the following data were collected from patients by a survey prior to 
vaccination: year of birth, age, gender (the covariate is listed as gender but is coded as male/female only), and 
race/ethnicity. 

In January 2017, the study moved to the University of Georgia in Athens, GA. The paper (36) contains a 
description of the study, but at the time of writing, no published paper contains a complete description of the 
study cohort. The study design was similar, with additional covariate information collected: complete date of 
birth, sex assigned at birth, race/ethnicity, BMI, height, weight, and questions about smoking and 
comorbidities. Beginning in the 2017-2018 flu season, participants aged 10 and older were also recruited for 
the study. The HAI assays were conducted in the same way. The post-vaccination time point target was 
changed to Day 28 beginning in fall 2018. Finally, additional subcohorts were administered other vaccines at 
certain points during the study. See Figure 3.1 for details. 
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Figure 3.1: Study diagram showing the subcohorts and associated time points collected during the ongoing 
UGA study. The diagram was created by Michael Carlock, the CIVR-HRP research director. 

We will refer to the data provided by Andrea Sant and Angela Branche as the RocFluVac study. We have not 
yet finished cleaning and processing the data, but it contains similar HAI measurements for homologous 
strains only, participants were administered a variety of vaccines (including Fluzone HD administered to 
participants aged 18 - 49), and also contains data on T cell responses to the vaccine. See (44) for one brief 
explanation of the data. 

3.2 Aim 1 
For this aim, we will use the cohort data collected by Ted Ross. 

3.2.1 Preliminary results 

We have calculated several metrics of antigenic distance, and will compare the year-based method (23), the 
dominant p-epitope sequence based method (25), and a distance based on antigenic cartography (29,82). To 
compute the dominant p-epitope distance, the pairwise Hamming distances are computed between the amino 
acid sequences of each of the five hemagglutinin head epitopes, and these are divided by the length of their 
respective sequences. The dominant p-epitope measurement is the maximum of each of these probabilities, 
representing the different between the two strains at their most different epitope. 

Antigenic cartography analyses were conducted by Amanda Skarlupka, PhD, who continues to work with us on 
this project. In short, antigenic cartography uses a matrix where each row represents an individual in the study 
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and each column represents an influenza strain. The cells of the matrix are populated with individual 𝑖𝑖’s titer 
to strain 𝑗𝑗. Multidimensional scaling (MDS) is used to reduce the matrix to a specified column dimension, while 
minimizing the change in the Euclidean distances between measurements. After performing iterative MDS on 
a variety of target column dimensions, we found that two dimensions was satisfactory, and our maps were 
similar to those in (29). After calculating the MDS maps, we obtained antigenic distances as the Euclidean 
distance between map coordinates of the vaccine strain and the other strains in the panel following the 
method of (82). For the purposes of this analysis, we ignored longitudinal measurements between individuals, 
and treated each observation of an individual as a unique measurement. Finally, all of the antigenic distance 
were normalized for each vaccine strain. Therefore, each vaccine strain had a distance of 0 with itself, and the 
most distant historical strain had a distance of 1 with that strain. (We normalized all three of the distance 
measurements in this way.) 

After computing the normalized distance measurements, we fit simple linear regression models with either 
post-vaccination titer (measuring the absolute immune response post-vaccination) or fold-change in titer 
(measuring the relative boost post-vaccination) against antigenic distance. Figure 3.2 shows sample linear 
regression models following this protocol for two vaccine strains. 

Our proposed metrics for evaluating the magnitude, breadth, and overall strength are the intercept of the 
regression line, slope of the regression line, and area under the regression line respectively. The intercept 
measures how strong the response is to the homologous strain, the slope describes how the response 
weakens linearly as antigenic distance increases, and the AUC provides a framework for combining the 
magnitude and breadth measurements into one measurement of overall strength of the vaccine-induced 
response. 
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Figure 3.2: Fitted models with titer outcomes and antigenic distance as the only predictor. The metrics reported 
are for titer increase for simplicity. 

As a case study to motivate our framework, we plan to analyze differences in these three metrics between the 
Fluzone SD and Fluzone HD vaccines, to determine if the high dose vaccine elicits a stronger or broader 
response in our cohort, as shown in Figure 3.3. Our preliminary results suggests that this effect differs 
qualitatively across vaccines, and we plan to analyze which vaccines show the most notable differences 
between strains. 
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Figure 3.3: Linear models for titer increase vs. antigenic distance, stratified by vaccine dose. The same metrics 
are reported for both doses. 

3.2.2 Proposed studies 

Going forward, we plan to consider more flexible models than the simple linear regression models we used in 
this step of the analysis. We will consider restricted spline GAMs and LOESS to fit a potentially nonlinear effect 
of antigenic distance, which we would expect in the presence of original antigenic sin if our panel contains 
strains which are distant enough to confer no cross-protection. We will also implement Bayesian multilevel 
linear and spline models, in order to incorporate between-subject variability into the overall model fit. 

We will then compare our metrics to traditional metrics, notably the mean titer increase, HAI composite score 
(83), and proportion of seroconverted strains, all calculated for each individual. In order to determine whether 
our proposed metrics are more robust than traditional metrics, we will subsample measurements from our 
cohort in order to mimic the use of different virus panels across labs. For 𝑘𝑘 labs, we will subsample 𝑝𝑝 strains 
from our panel, plus the homologous strain. For each of these panels, we will calculate the metrics for each 
individual, and then analyze the variability of mean metrics across labs. 

Finally, we will explore weighting schema for our metrics. The unweighted AUC assigns equal weight to strains 
of all antigenic distances, but perhaps we would prefer to weight the response to distant strains higher or 
lower than similar strains–for example, if we are primarily considered with boosting the response to a specific 
pandemic strain, we could assign less weight to distant strains. But if we are considering candidates for a 
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broadly reactive vaccine, we could weight distant strains higher in order to favor vaccine candidates that 
induce responses to the most distant strains. Examples of weighting schema are shown in Figure 3.4. 

 

Figure 3.4: Example weighting schema for AUC measurements. This figure shows the responses to the H1N1-
California-2009 vaccine in the UGAFluVac study. In the linear weighting scheme, the titer increase is multipled 
by the reciprocal antigenic distance in order to construct weights that decrease linearly as strains become more 
distance. In the 2 antigenic unit scheme, all strains which are within two antigenic units on the cartography 
map (or equivalent with the other distances) are weighted equally, while strains that are further away are not 
included in calculating the AUC. 

3.2.3 Expected outcomes 

Our primary outcome for this goal will be a set of metrics that we propose for the evaluation of broadly 
reactive vaccine candidates. These metrics will be calculated on the UGAFluVac data and will be supported by 
our subsampling analysis to estimate the robustness of our metrics. Developing these metrics will improve our 
understanding of the functional relationship between antigenic distance and immune response. Finally, our 
robustness analysis will provide insight into the amount of error induced into metrics for post-vaccination 
immune response by variability within virus panels used across different research groups. 

3.3 Aim 2 
For this aim, we will use the UGAFluVac data, specifically the portion collected at the University of Georgia. 
The PA/FL data does not have prior vaccination history and thus we can only use the UGA data for this aim. 

3.3.1 Preliminary results 
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We first explored the homologous case in order to identify simple first-order effects of each of the covariates 
of interest. Figure 3.5 shows plots of fold change in titer (titer increase) plotted against available covariates. 
The only covariate which independently explained a substantial proportion of the variance in the outcome was 
prevaccination titer. Note that these results do not consider interaction effects (or subgroup specific effects 
that can be modeled as interactions): for example, we would not expect to see an effect of dose in the entire 
population since otherwise healthy adults under the age of 65 were not offered high dose vaccine. The 𝑅𝑅2 
metrics also only capture linear trend–if a predictor acts through a primarily nonlinear (especially true for 
nonmonotonic effects) the 𝑅𝑅2 will drastically underestimate the strength of association between the two 
variables. 
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Figure 3.5: Homologous titer increase to the influenza A(H1N1) Michigan-2015 strain in the UGAFluVac data, 
plotted against a variety of covariates. The size of the point corresponds to the number of overlapping 
measurements at that location. The purple vertical lines indicate medians, and the horizontal purple lines mark 
the 2.5th and 97.5th quantiles. While many of the univariate associations with titer increase are weak or 
difficult to see, many of these effects become much stronger when interactions are taken into effect. These 
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trends also vary widely across other strains which are not shown. 

From our exploratory analyses, we also know that the effect of prevaccination titer on the homologous 
immune response varies across vaccine strain and dose (Figure 3.6). We fit stratified linear models with both 
parallel slopes (A and C) and varying slopes (B and D) with these two factors. We further expect to see a third-
order interaction between vaccine strain and dose. Note that these preliminary figures show all individuals, 
and the effect of dose will be further modified by age, since high dose vaccine was only offered to elderly 
participants. 

 

Figure 3.6: Titer increase plotted against pre-vaccination titer. Models are stratified by vaccine strain type (A 
and B) or by vaccine dose (C and D). Figures A and C show a parallel slopes model where only the intercepts are 
allowed to vary (corresponding to the model with no interaction term, only main effects for both variables), 
while Figures B and D show the varying slopes (interaction and main effects) models. The varying slopes 
models improve R-squared marginally, but there are several limitations to these analyses that may hide larger 
differences. 

We further conducted an analysis at the strain-specific level, fitting separate models for each combination of 
vaccine strain and assay strain represented in the data (Figure 3.7). 
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Figure 3.7: Relationship between titer increase and prevaccination titer for each of the assay strains which 
were used as part of a historical panel. Only assays for individuals who received H1N1-Michigan-2015 
containing vaccine are shown for simplicity. We can see that the intercept and slope have the largest 
magnitude for the homologous strain and for the previous vaccine strain (H1N1-California-2009), and 
decreases with other assay strains. 

We can further stratify these strain specific analyses by other factors like dose (Figure 3.8). These analyses 
reveal a non-constant modification of the effect of prevaccination titer by dose, which differs across vaccines 
and across assay strains within vaccines. 
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Figure 3.8: The same analyses as shown in Figure 3.7, but stratified by vaccine dose. Additionally, only 
individuals aged 65 and older are included in these models, since younger individuals were not eligible to 
receive high dose vaccines. Some relationships are distorted by small sample effects, but in general the dose 
appeared to make little difference for this particular vaccine. However, we see varying, potentially real effects 
in the MI/15 and CA/09 effects. The effect of dose also varies across vaccine strains (data not shown). 

Differences in strain-specific models for the same vaccine demonstrate the interaction between antigenic 
distance, prevaccination titer, and other stratifying factors (like dose and prior vaccination history). We 
conducted a preliminary analysis of the strength of this interaction by compiling the slopes of each model (as 
shown in Figure 3.7, but incorporating data from all vaccine strains that were used in the study), and plotting 
these slopes against the antigenic distance between the vaccine strain and the assay strain for that model, 
shown in Figure 3.9. Note that in this framework, vaccines were only compared against assays of the same 
type. HAI assays for influenza B strains which predated the divergence of the Victoria and Yamagata lineages 
were compared against both B-Yamagata and B-Victoria vaccines. 
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For the type A influenza assays, we see a strong positive correlation between antigenic distance and slope of 
the strain-specific model. As the vaccine strain and the assay strain become more distant, pre-vaccination titer 
has less of an effect on the amount of boosting produced by the vaccine. 

 

Figure 3.9: Slopes from each of the individual regression analyses (similar to those depicted in Figure 3.7) 
plotted against the dominant p-Epitope antigenic distance between the vaccine strain and the assay strain. We 
performed these individual regression analyses for every combination of vaccine strain and assay strain in the 
UGAFluVac data. Point colors in this plot represent different assay strains, while point shapes represent 
different vaccine strains. 

We also used machine learning models to predict response to the homologous vaccine strain based on all of 
the covariate data that was available to us. We used permutation variable importance to score the importance 
of the included predictors (Figure 3.10). We found that prevaccination titer was, by far, the most important 
covariate in predicting vaccine boosting. However, we also observed differences between influenza seasons, 
individuals of different ages, and the vaccine strain type. Future models will include antigenic distance 
measurements instead of indicators for strain types. 
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Figure 3.10: Permutation variable importance (VI) for each feature included in the final tuned random forest 
model. Permutation VI is calculated by randomly permuting the variable of interest (which should destroy any 
signal), and subtracting the estimated RMSE with the permuted variable from the estimated RMSE when the 
variable is not permuted. The model was trained using a subset of 70% of the UGAFluVac data, and these 
RMSE for both the permutated and non-permuted data were calculated using the holdout set of the remaining 
30% of data. Despite using a random forest model, which can detect interactions and nonlinear effects, any 
effects that interact with age or dose may be artificially dampened in this analysis due to class imbalance. 

3.3.2 Proposed studies 

First, we will expand and refine our preliminary machine learning approach to include all predictors of 
interest. We will apply similar models to quantify the predictive power of each variable using permutation 
importance. For the final models, we will perform more in-depth feature engineering to ensure that predictors 
have optimal predictive power while retaining biological meaning. These models can learn nonlinear and 
interaction effects without prior specification and thus will allow us to understand how well all we can expect 
inferential models to capture trends in the outcome. We will also fit models using both the post-vaccination 
titer and the titer increase as outcomes, to determine if the drivers of the raw immune response are less 
influenced by pre-vaccination titer. We will also fit separate models for elderly participants in order to gain a 
better understanding of the effect of vaccine dose in this subgroup. 

After we understand how much of the post-vaccination titer can be explained by the data we have, we will 
build Bayesian hierarchical models to take advantage of the clustered structure of the data. These hierarchical 
models will be allow us to make inferences about the relationships between variables, rather than only 
quantify the predictive power. Furthermore, we can implement random effects in these models to partially 
absorb unmeasured confounding, which is not possible within a predictive machine learning framework. 
However, we can compare the overall predictive power of our inferential models to the best predictive 
models. 

Finally, we will modify previously developed mechanistic models (73,74) which model steric hindrance 
between multiple epitopes of the same antigen. The model for steric hindrance is mathematically similar to 
how we would model differences in binding avidity between antigenically distance strains, so by incorporating 
a notion of antigenic similarity, we can use these models to predict how the relationship between dose, prior 
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immunity, and vaccine response varies with antigenic distance. We will compare the model predictions with 
the predictions made by our machine learning and inferential models. A notable limitation of the mechanistic 
models in this case is that we will not be able to make predictions about the effect of serial repeated 
vaccinations as we hope to do for the hierarchical models. 

3.3.3 Expected outcomes 

Our work on this aim will produce fitted inferential models, with estimates of the strength of the effect for 
pre-vaccination titer, prior vaccination history, and other drivers of the immune response. Our models will also 
provide estimates for the strength of interactions between these covariates. We will also produce a set of 
tuned predictive models. Estimates of the vaccine response for each individual will be computed from the 
inferential and the predictive models, and by comparing the two sets of predictions, we will estimate the 
performance of our inferential models. Finally, we will update the mechanistic models and compare patterns 
in mechanistic model results to the patterns observed in our data. 

3.4 Aim 3 
For this aim, we will combine the UGAFluVac data, RocFluVac data, and any applicable data provided by Ben 
Cowling. 

3.4.1 Preliminary results 

While working with the UGAFluVac data, we have constructed a small DAG exploring only the necessary 
adjustment variables that affect the causal pathway between dose and post-vaccination titer (Figure 3.11). In 
this reduced framework, the total and direct causal effects of dose would be the same, and the only factor we 
would need to adjust for to obtain the true causal estimate of dose is age. Although age may be a common 
cause of several other factors that affect post-vaccination titer, vaccine dose is a quality of the intervention 
(vaccination) and thus the only factors that affect vaccine dose are factors that determine participation in the 
study. 
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Figure 3.11: A directed acyclic graph (DAG) showing a graphical causal model for the effect of dose (the 
exposure, in green) on post-vaccination titer (the outcome, in blue with an I symbol). Age is a confounder and is 
colored pink in the DAG. 

We have also conducted preliminary comparisons of the UGAFluVac and RocFluVac data, primarily to compare 
the patterns in antibody responses observed in the UGAFluVac data with the T cell responses observed in the 
RocFluVac data (Figure 3.12). We also have HAI data for the RocFluVac data, and thus we can compare the 
effect of dose on the immune response in the 18 - 49 year olds in the RocFluVac study with the effect in the 
65+ year olds in the UGAFluVac study. 

 

Figure 3.12: Antibody immune response measured via HAI in the UGAFluVac cohort compared to T cell immune 
response measured via Elispot in the RocFluVac cohort. 

3.4.2 Proposed studies 

First, we will ensure that our theoretical causal model is accurate, and we will update our model to include 
other common causes which are observed in both data sets. Our causal model will be formulated as a DAG, 
which we will use to generate a minimal sufficient adjustment set for the causal effect of vaccine dose on 
post-vaccination titer and on titer increase. We will analyze the conditional independencies of the DAG by 
comparing the observed standardized covariance matrix to the covariance matrix predicted by the DAG in 
order to determine how consistent our data are with the identified DAG. 

We will apply traditional regression methods using either cluster-robust standard error estimation or 
hierarchical modeling to obtain a causal estimate of the effect of dose, using a minimally sufficient adjustment 
set identified by our DAG. We will use quantitative bias analysis methodology to estimate the effect of 
unmeasured confounding on our estimate. Finally, we will obtain the same estimate using a targeted 
maximum likelihood estimation (TMLE) framework, which is doubly robust to model misspecification, and we 
can compare the TMLE estimate to the regression estimate. 

We will explore the interaction of age and dose by estimating the causal effect of dose in both the UGAFluVac 
and RocFluVac studies separately and comparing these estimates to the combined study estimate. We note 
that differences in these estimates could be due to sampling variation, systematic variation between the two 
source populations, or due to the interaction effect with age. We can furthermore estimate interaction effects 
in all three situations. 

3.4.3 Expected outcomes 

The outcomes of this aim will be estimates of the effect of vaccine dose on post-vaccination titer, controlling 
for age. We will estimate the amount of confounding bias in our causal effects, and compare the estimates 
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from the two individual studies to the overall estimate. The individual study and confounding analyses will 
allow us to understand the limitations of our causal estimates. 

3.5 Timeline 
Figure 3.13 shows the expected timeline for our project. The expected completion date for our project is 
Friday, March 14, 2025, and a dissertation draft will be sent to the committee no later than the following 
Monday. My dissertation defense will be planned for early April to accommodate Graduate School deadlines. 

 

Figure 3.13: Proposed project timeline. We expect the majority of research to be conducted during the 2023-
2024 academic year, extending into 2025 as necessary. All research will be complete by March 1, 2025 in order 
to finalize results for the written dissertation. 
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